Problems

Age
Difficulty
Found: 3162

Let \(a, b\) be positive integers and \((a, b) = 1\). Prove that the quantity cannot be a real number except in the following cases \((a, b) = (1, 1)\), \((1,3)\), \((3,1)\).

Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).

a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.

b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).

Find the largest and smallest values of the functions

a) \(f_1 (x) = a \cos x + b \sin x\); b) \(f_2 (x) = a \cos^2x + b \cos x \sin x + c \sin^2x\).

The Babylonian algorithm for deducing \(\sqrt{2}\). The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + 2/x_n)\) (\(n \geq 1\)).

Prove that \(\lim\limits_{n\to\infty} x_n = \sqrt{2}\).

What will the sequence from the previous problem 61297 be converging towards if we choose \(x_1\) as equal to \(-1\) as the initial condition?

The iterative formula of Heron. Prove that the sequence of numbers \(\{x_n\}\) given by the conditions \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + k/x_n)\), converges. Find the limit of this sequence.