Problems

Age
Difficulty
Found: 266

In the family of happy gnomes there is a father, a mother and a child. The names of the family members: Alex, Charlie and Jo. At the dinner table two gnomes made two statements.

Charlie said: “Alex and Jo are of different genders. Alex and Charlie are my parents”.

Alex said: “I am Jo’s father. I am the daughter of Charlie”.

Who is who? That is, what is the name of the father, the mother and the child, if it is known that each gnome lied once, and each told the truth once.

On the first day of school, in all three of the first year classes (1A, 1B, 1C), there were three lessons: Maths, French and Biology. Two classes cannot have the same lesson at the same time. 1B’s first lesson was Maths. The Biology teacher praised the students in 1B: “You have even better marks than 1A”. 1A’s second lesson was not French. Which class’s last lesson was Biology?

Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?

In the entry \({*} + {*} + {*} + {*} + {*} + {*} + {*} + {*} = {*}{*}\) replace the asterisks with different digits so that the equality is correct.

It is known that \(AA + A = XYZ\). What is the last digit of the product: \(B \times C \times D \times D \times C \times E \times F \times G\) (where different letters denote different digits, identical letters denote identical digits)?

Izzy wrote a correct equality on the board: \(35 + 10 - 41 = 42 + 12 - 50\), and then subtracted 4 from both parts: \(35 + 10 - 45 = 42 + 12 - 54\). She noticed that on the left hand side of the equation all of the numbers are divisible by 5, and on the right hand side by 6. Then she took 5 outside of the brackets on the left hand side and 6 on the right hand side and got \(5(7 + 2 - 9)4 = 6(7 + 2 - 9)\). Having simplified both sides by a common multiplier, Izzy found that \(5 = 6\). Where did she go wrong?

On an island there are 1,234 residents, each of whom is either a knight (who always tells the truth) or a liar (who always lies). One day, all of the inhabitants of the island were broken up into pairs, and each one said: “He is a knight!" or “He is a liar!" about his partner. Could it eventually turn out to be that the number of “He is a knight!" and “He is a liar!" phrases is the same?

Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?