Problems

Age
Difficulty
Found: 705

Let \(n\) numbers are given together with their product \(p\). The difference between \(p\) and each of these numbers is an odd number.

Prove that all \(n\) numbers are irrational.

a) Could an additional \(6\) digits be added to any \(6\)-digit number starting with a \(5\), so that the \(12\)-digit number obtained is a complete square?

b) The same question but for a number starting with a \(1\).

c) Find for each \(n\) the smallest \(k = k (n)\) such that to each \(n\)-digit number you can assign \(k\) more digits so that the resulting \((n + k)\)-digit number is a complete square.

Janine and Zahara each thought of a natural number and said them to Alex. Alex wrote the sum of the thought of numbers onto one sheet of paper, and on the other – their product, after which one of the sheets was hidden, and the other (on it was written the number of 2002) was shown to Janine and Zahara. Seeing this number, Janine said that she did not know what number Zahara had thought of. Hearing this, Zahara said that she did not know what number Janine had thought of. What was the number which Zahara had thought of?

On a table there are 2022 cards with the numbers 1, 2, 3, ..., 2022. Two players take one card in turn. After all the cards are taken, the winner is the one who has a greater last digit of the sum of the numbers on the cards taken. Find out which of the players can always win regardless of the opponent’s strategy, and also explain how he should go about playing.

Jane wrote another number on the board. This time it was a two-digit number and again it did not include digit 5. Jane then decided to include it, but the number was written too close to the edge, so she decided to t the 5 in between the two digits. She noticed that the resulting number is 11 times larger than the original. What is the sum of digits of the new number?

a) Find the biggest 6-digit integer number such that each digit, except for the two on the left, is equal to the sum of its two left neighbours.

b) Find the biggest integer number such that each digit, except for the rst two, is equal to the sum of its two left neighbours. (Compared to part (a), we removed the 6-digit number restriction.)

Prove the divisibility rule for \(3\): the number is divisible by \(3\) if and only if the sum of its digits is divisible by \(3\).

While studying numbers and its properites, Robinson came across a 3-digit prime number with the last digit being equal to the sum of the first two digits. What was the last digit of that number if among the number did not have any zeros among it’s digits?