Problems

Age
Difficulty
Found: 220

On the plane 100 circles are given, which make up a connected figure (that is, not falling apart into pieces). Prove that this figure can be drawn without taking the pencil off of the paper and going over any line twice.

In some country there is a capital and another 100 cities. Some cities (including the capital) are connected by one-way roads. From each non-capital city 20 roads emerge, and 21 roads enter each such city. Prove that you cannot travel to the capital from any city.

The faces of a polyhedron are coloured in two colours so that the neighbouring faces are of different colours. It is known that all of the faces except for one have a number of edges that is a multiple of 3. Prove that this one face has a multiple of 3 edges.

On a function \(f (x)\), defined on the entire real line, it is known that for any \(a>1\) the function \(f (x) + f (ax)\) is continuous on the whole line. Prove that \(f (x)\) is also continuous on the whole line.

On the dining room table, there is a choice of six dishes. Every day Valentina takes a certain set of dishes (perhaps, she does not take a single dish), and this set of dishes should be different from all of the sets that she took in the previous days. What is the maximum number of days that Valentina will be able to eat according to such rules and how many meals will she eat on average during the day?