Problems

Age
Difficulty
Found: 584

Do there exist three points \(A\), \(B\) and \(C\) on the plane such that for any point \(X\) the length of at least one of the segments \(XA\), \(XB\) and \(XC\) is irrational?

Find the sums of the following series:

a) \({\frac {1} {1 \times 2}} + {\frac {1} {2 \times 3}} + {\frac {1} {3 \times 4}} + {\frac {1} {4 \times 5}} + \dots\);

b) \({\frac {1} {1 \times 2 \times 3}} + {\frac {1} {2 \times 3 \times 4}} + {\frac {1} {3 \times 4 \times 5}} + {\frac {1} {4 \times 5 \times 6}} + \dots\);

c) \({\frac {0!} {r!}} + {\frac {1!} {(r-1)!}} + {\frac {2!} {(r-2) !}} + {\frac {3!} {(r-3)!}} + \dots\) for \(r \geq 2\).

Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).

For what values of \(n\) does the polynomial \((x+1)^n - x^n - 1\) divide by:

a) \(x^2 + x + 1\); b) \((x^2 + x + 1)^2\); c) \((x^2 + x + 1)^3\)?

a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.

b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).

Old calculator I.

a) Suppose that we want to find \(\sqrt[3]{x}\) (\(x> 0\)) on a calculator that can find \(\sqrt{x}\) in addition to four ordinary arithmetic operations. Consider the following algorithm. A sequence of numbers \(\{y_n\}\) is constructed, in which \(y_0\) is an arbitrary positive number, for example, \(y_0 = \sqrt{\sqrt{x}}\), and the remaining elements are defined by \(y_{n + 1} = \sqrt{\sqrt{x y_n}}\) (\(n \geq 0\)).

Prove that \(\lim\limits_{n\to\infty} y_n = \sqrt[3]{x}\).

b) Construct a similar algorithm to calculate the fifth root.