Problems

Age
Difficulty
Found: 116

Calculate the following sums:

a) \(\binom{5}{0} + 2\binom{5}{1} + 2^2\binom{5}{2} + \dots +2^5\binom{5}{5}\);

b) \(\binom{n}{0} - \binom{n}{1} + \dots + (-1)^n\binom{n}{n}\);

c) \(\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}\).

Here is a fragment of the table, which is called the Leibniz triangle. Its properties are “analogous in the sense of the opposite” to the properties of Pascal’s triangle. The numbers on the boundary of the triangle are the inverses of consecutive natural numbers. Each number is equal to the sum of two numbers below it. Find the formula that connects the numbers from Pascal’s and Leibniz triangles.

Find the sums of the following series:

a) \({\frac {1} {1 \times 2}} + {\frac {1} {2 \times 3}} + {\frac {1} {3 \times 4}} + {\frac {1} {4 \times 5}} + \dots\);

b) \({\frac {1} {1 \times 2 \times 3}} + {\frac {1} {2 \times 3 \times 4}} + {\frac {1} {3 \times 4 \times 5}} + {\frac {1} {4 \times 5 \times 6}} + \dots\);

c) \({\frac {0!} {r!}} + {\frac {1!} {(r-1)!}} + {\frac {2!} {(r-2) !}} + {\frac {3!} {(r-3)!}} + \dots\) for \(r \geq 2\).

Prove that for a real positive \(\alpha\) and a positive integer \(d\), \(\lfloor \alpha / d\rfloor = \lfloor \lfloor \alpha\rfloor / d\rfloor\) is always satisfied.

Prove the irrationality of the following numbers:

a) \(\sqrt{3}{17}\)

b) \(\sqrt{2} + \sqrt{3}\)

c) \(\sqrt{2} + \sqrt{3} + \sqrt{5}\)

d) \(\sqrt{3}{3} - \sqrt{2}\)

e) \(\cos 10^{\circ}\)

f) \(\tan 10^{\circ}\)

g) \(\sin 1^{\circ}\)

h) \(\log_{2}3\)

Is it possible for

a) the sum of two rational numbers irrational?

b) the sum of two irrational numbers rational?

c) an irrational number with an irrational degree to be rational?