Problems

Age
Difficulty
Found: 220

Prove that the infinite decimal \(0.1234567891011121314 \dots\) (after the decimal point, all of the natural numbers are written out in order) is an irrational number.

Three people play table tennis, and the player who lost the game gives way to the player who did not participate in it. As a result, it turned out that the first player played 10 games and the second played 21 games. How many games did the third player play?

10 numbers are written around the circle, the sum of which is equal to 100. It is known that the sum of every three numbers standing side by side is not less than 29.

Specify the smallest number \(A\) such that in any such set of numbers each of the numbers does not exceed \(A\).

Prove that the equation \[a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x + \dots + a_n \sin nx + b_n \cos nx = 0\] has at least one root for any values of \(a_1 , b_1, a_2, b_2, \dots, a_n, b_n\).

Let \(f\) be a continuous function defined on the interval \([0; 1]\) such that \(f (0) = f (1) = 0\). Prove that on the segment \([0; 1]\) there are 2 points at a distance of 0.1 at which the function \(f 4(x)\) takes equal values.

A convex figure and point \(A\) inside it are given. Prove that there is a chord (that is, a segment joining two boundary points of a convex figure) passing through point \(A\) and dividing it in half at point \(A\).