Prove that for \(n> 0\) the polynomial \(nx^{n + 1} - (n + 1) x^n + 1\) is divisible by \((x - 1)^2\).
Prove that the tangent to the graph of the function \(f (x)\), constructed at coordinates \((x_0, f (x_0))\) intersects the \(Ox\) axis at the coordinate: \(x_0 -\frac{f(x_0)}{f'(x_0)}\).
Prove that if the function \(f (x)\) is convex upwards on the line \([a, b]\), then for any distinct points \(x_1, x_2\) in \([a; b]\) and for any positive \(\alpha_{1}, \alpha_{2}\) such that \(\alpha_{1} + \alpha_ {2} = 1\) the following inequality holds: \(f(\alpha_1 x_1 + \alpha_2 x_2 ) > \alpha_1 f (x_1) + \alpha_2 f(x_2)\).
Prove that for \(n > 0\) the polynomial \[P (x) = n^2x^{n + 2} - (2n^2 + 2n - 1) x^{n + 1} + (n + 1)^2x^n - x - 1\] is divisible by \((x - 1)^3\).
Prove that for \(n> 0\) the polynomial \(x^{2n + 1} - (2n + 1)x^{n + 1} + (2n + 1)x^n - 1\) is divisible by \((x - 1)^3\).
Hercules meets the three-headed snake Hydra of Lerna. Every minute, Hercules chops off one head of the snake. Let \(x\) be the survivability of the snake (\(x > 0\)). The probability \(p_s\) of the fact that in the place of the severed head will grow s new heads \((s = 0, 1, 2)\) is equal to \(\frac{x^s}{1 + x + x^2}\).
During the first 10 minutes of the battle, Hercules recorded how many heads grew in place of each chopped off one. The following vector was obtained: \(K = (1, 2, 2, 1, 0, 2, 1, 0, 1, 2)\). Find the value of the survivability of the snake, under which the probability of the vector \(K\) is greatest.
The water level in a pool is given by a quadratic function \(h(t) = at^2 + bt + c\), where \(t\) is measured in hours.
At the moment when the pool is completely drained, say at time \(t_0\), we have \(h(t_0) = 0\) and \(h'(t_0) = 0\).
It is also known that after the first hour, the water level has dropped to exactly half of its original value: \(h(1) = \tfrac{1}{2} h(0)\).
How many hours does it take for the pool to drain completely?