In the magical land of Anchuria there is a drafts championship made up of several rounds. The days and cities in which the rounds are carried out are determined by a draw. According to the rules of the championship, no two rounds can take place in one city, and no two rounds can take place on one day. Among the fans, a lottery is arranged: the main prize is given to those who correctly guess, before the start of the championship, in which cities and on which days all of the round will take place. If no one guesses, then the main prize will go to the organising committee of the championship. In total, there are eight cities in Anchuria, and the championship is only allotted eight days. How many rounds should there be in the championship, so that the organising committee is most likely to receive the main prize?
In the centre of a rectangular billiard table that is 3 m long and 1 m wide, there is a billiard ball. It is hit by a cue in a random direction. After the impact the ball stops passing exactly 2 m. Find the expected number of reflections from the sides of the table.
A die is thrown six times. Find the mathematical expectation of the number of different faces the die lands on.
On a calculator keypad, there are the numbers from 0 to 9 and signs of two actions (see the figure). First, the display shows the number 0. You can press any keys. The calculator performs the actions in the sequence of clicks. If the action sign is pressed several times, the calculator will only remember the last click.
a) The button with the multiplier sign breaks and does not work. The Scattered Scientist pressed several buttons in a random sequence. Which result of the resulting sequence of actions is more likely: an even number or an odd number?
b) Solve the previous problem if the multiplication symbol button is repaired.
On a Christmas tree, 100 light bulbs hang in a row. Then the light bulbs begin to switch according to the following algorithm: all are lit up, then after a second, every second light goes out, after another second, every third light bulb changes: if it was on, it goes out and vice versa. After another second, every fourth bulb switches, a second later – every fifth and so on. After 100 seconds the sequence ends. Find the probability that a light bulb straight after a randomly selected light bulb is on (bulbs do not burn out and do not break).
James furiously cuts a rectangular sheet of paper with scissors. Every second he cuts a random piece by an unsystematic rectilinear cut into two parts.
a) Find the mathematical expectation of the number of sides of a polygon (made from a piece of paper) that James randomly picks up after an hour of such work.
b) Solve the same problem if at first the piece of paper had the form of an arbitrary polygon.
The upper side of a piece of square paper is white, and the lower one is red. In the square, a point F is randomly chosen. Then the square is bent so that one randomly selected vertex overlaps the point F. Find the mathematical expectation of the number of sides of the red polygon that appears.
A regular dice is thrown many times. Find the mathematical expectation of the number of rolls made before the moment when the sum of all rolled points reaches 2010 (that is, it became no less than 2010).
The point \(O\) is randomly chosen on piece of square paper. Then the square is folded in such a way that each vertex is overlaid on the point \(O\). The figure shows one of the possible folding schemes. Find the mathematical expectation of the number of sides of the polygon that appears.
A fair dice is thrown many times. It is known that at some point the total amount of points became equal to exactly 2010.
Find the mathematical expectation of the number of throws made to this point.