Think of a way to finish constructing Pascal’s triangle upward.
Consider a chess board of size \(n \times n\). It is required to move a rook from the bottom left corner to the upper right corner. You can move only up and to the right, without going into the cells of the main diagonal and the one below it. (The rook is on the main diagonal only initially and in the final moment in time.) How many possible routes does the rook have?
Let \((1 + \sqrt {2} + \sqrt {3})^n = p_n + q_n \sqrt {2} + r_n \sqrt {3} + s_n \sqrt {6}\) for \(n \geq 0\). Find:
a) \(\lim \limits_ {n \to \infty} {\frac {p_n} {q_n}}\); b) \(\lim \limits_ {n \to \infty} {\frac {p_n} {r_n}}\); c) \(\lim \limits_ {n \to \infty} {\frac {p_n} {s_n}}\);
Find the generating functions of the sequences of Chebyshev polynomials of the first and second kind: \[F_T(x,z) = \sum_{n=0}^{\infty}T_n(x)z^n;\quad F_U(x,z) = \sum_{n=0}^{\infty}U_n(X)z^n.\]
Definitions of Chebyshev polynomials can be found in the handbook.
We denote by \(P_{k, l}(n)\) the number of partitions of the number \(n\) into at most \(k\) terms, each of which does not exceed \(l\). Prove the equalities:
a) \(P_{k, l}(n) - P_{k, l-1}(n) = P_{k-1, l}(n-l)\);
b) \(P_{k, l}(n) - P_{k-1, l} (n) = P_{k, l-1}(n-k)\);
c) \(P_{k, l}(n) = P_{l, k} (n)\);
d) \(P_{k, l}(n) = P_{k, l} (kl - n)\).
A group of several friends was in correspondence in such a way that each letter was received by everyone except for the sender. Each person wrote the same number of letters, as a result of which all together the friends received 440 letters. How many people could be in this group of friends?
In a line 40 signs are written out: 20 crosses and 20 zeros. In one move, you can swap any two adjacent signs. What is the least number of moves in which it is guaranteed that you can ensure that some 20 consecutive signs are crosses?
Author: A.V. Shapovalov
We call a triangle rational if all of its angles are measured by a rational number of degrees. We call a point inside the triangle rational if, when we join it by segments with vertices, we get three rational triangles. Prove that within any acute-angled rational triangle there are at least three distinct rational points.
Author: Shapovalov A.V.
Let \(A\) and \(B\) be two rectangles. From rectangles equal to \(A\), a rectangle similar to \(B\) was created.
Prove that from rectangles equal to \(B\), you can create a rectangle similar to \(A\).
Author: A. Glazyrin
In the coordinate space, all planes with the equations \(x \pm y \pm z = n\) (for all integers \(n\)) were carried out. They divided the space into tetrahedra and octahedra. Suppose that the point \((x_0, y_0, z_0)\) with rational coordinates does not lie in any plane. Prove that there is a positive integer \(k\) such that the point \((kx_0, ky_0, kz_0)\) lies strictly inside some octahedron from the partition.