Problems

Age
Difficulty
Found: 62

The area of the red triangle is \(25\) and the area of the orange triangle is \(49\). What is the area of the trapezium \(ABCD\)?

image

Prove that the ratio of perimeters of similar polygons is equal to the similarity coefficient.

Let \(CB\) and \(CD\) be tangents to the circle with the centre \(A\), let \(E\) be the point of intersection of the line \(AC\) with the circle. Draw \(FG\) as the segment of a tangent drawn through the point \(E\) between the lines \(CB\) and \(CD\). Find the length \(|FG|\) if the radius of the circle is \(15\) and \(|AC| = 39\).

Prove that the relation between areas of two similar polygons equals to the square of their similarity coefficient.

In triangle \(\triangle ABC\) with right angle \(\angle ACB=90^{\circ}\), \(CD\) is the height and \(CE\) is the bisector. Draw the bisectors \(DF\) and \(DG\) of the triangles \(BDC\) and \(ADC\). Prove that \(CFEG\) is a square.

Let \(A\), \(B\), \(C\), \(D\), \(E\) be five different points on the circumference of a circle in that (cyclic) order. Let \(F\) be the intersection of chords \(BD\) and \(CE\). Show that if \(AB=AE=AF\) then lines \(AF\) and \(CD\) are perpendicular.

Let \(u\) and \(v\) be two positive integers, with \(u>v\). Prove that a triangle with side lengths \(u^2-v^2\), \(2uv\) and \(u^2+v^2\) is right-angled.

We call a triple of natural numbers (also known as positive integers) \((a,b,c)\) satisfying \(a^2+b^2=c^2\) a Pythagorean triple. If, further, \(a\), \(b\) and \(c\) are relatively prime, then we say that \((a,b,c)\) is a primitive Pythagorean triple.

Show that every primitive Pythagorean triple can be written in the form \((u^2-v^2,2uv,u^2+v^2)\) for some coprime positive integers \(u>v\).

The lengths of three sides of a right-angled triangle are all integers.

Show that one of them is divisible by \(5\).

The perimeter of the triangle \(\triangle ABC\) is \(10\). Let \(D,E,F\) be the midpoints of the segments \(AB,BC,AC\) respectively. What is the perimeter of \(\triangle DEF\)?