a) Prove that a number is divisible by \(8\) if and only if the number formed by its laast three digits is divisible by \(8\).
b) Can you find an analogous rule for \(16\)? What about \(32\)?
Look at this formula found by Euler: \(n^2 +n +41\). It has a remarkable property: for every integer number from \(1\) to \(21\) it always produces prime numbers. For example, for \(n=3\) it is \(53\), a prime. For \(n=20\) it is \(461\), also a prime, and for \(n=21\) it is \(503\), prime as well. Could it be that this formula produces a prime number for any natural \(n\)?
Denote by \(n!\) (called \(n\)-factorial) the following product \(n!=1\cdot 2\cdot 3\cdot 4\cdot...\cdot n\). Show that if \(n!+1\) is divisible by \(n+1\), then \(n+1\) must be prime. (It is also true that if \(n+1\) is prime, then \(n!+1\) is divisible by \(n+1\), but you don’t need to show that!)
From the set of numbers 1 to \(2n\), \(n + 1\) numbers are chosen. Prove that among the chosen numbers there are two, one of which is divisible by another.
We are given 111 different natural numbers that do not exceed 500. Could it be that for each of these numbers, its last digit coincides with the last digit of the sum of all of the remaining numbers?
Peter plays a computer game “A bunch of stones.” First in his pile of stones he has 16 stones. Players take turns taking from the pile either 1, 2, 3 or 4 stones. The one who takes the last stone wins. Peter plays this for the first time and therefore each time he takes a random number of stones, whilst not violating the rules of the game. The computer plays according to the following algorithm: on each turn, it takes the number of stones that leaves it to be in the most favorable position. The game always begins with Peter. How likely is it that Peter will win?
There are fewer than 30 people in a class. The probability that at random a selected girl is an excellent student is \(3/13\), and the probability that at random a chosen boy is an excellent pupil is \(4/11\). How many excellent students are there in the class?
Out of the given numbers 1, 2, 3, ..., 1000, find the largest number \(m\) that has this property: no matter which \(m\) of these numbers you delete, among the remaining \(1000 - m\) numbers there are two, of which one is divisible by the other.
Do you think that among the four consecutive natural numbers there will be at least one that is divisible a) by 2? b) by 3? c) by 4? d) by 5?
Six sacks of gold coins were found on a sunken ship of the fourteenth century. In the first four bags, there were 60, 30, 20 and 15 gold coins. When the coins were counted in the remaining two bags, someone noticed that the number of coins in the bags has a certain sequence. Having taken this into consideration, could you say how many coins are in the fifth and sixth bags?