Problems

Age
Difficulty
Found: 1862

The tracks in a zoo form an equilateral triangle, in which the middle lines are drawn. A monkey ran away from its cage. Two guards try to catch the monkey. Will they be able to catch the monkey if all three of them can run only along the tracks, and the speed of the monkey and the speed of the guards are equal and they can always see each other?

The judges of an Olympiad decided to denote each participant with a natural number in such a way that it would be possible to unambiguously reconstruct the number of points received by each participant in each task, and that from each two participants the one with the greater number would be the participant which received a higher score. Help the judges solve this problem!

In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?

The function \(f (x)\) for each real value of \(x\in (-\infty, + \infty)\) satisfies the equality \(f (x) + (x + 1/2) \times f (1 - x) = 1\).

a) Find \(f (0)\) and \(f (1)\). b) Find all such functions \(f (x)\).

In the numbers of MEXAILO and LOMONOSOV, each letter denotes a number (different letters correspond to different numbers). It is known that the products of the numbers of these two words are equal. Can both numbers be odd?

The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \sin x + a & = bx \\ \cos x &= b \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.

The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \cos x &= ax + b \\ \sin x + a &= 0 \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.

A game with 25 coins. In a row there are 25 coins. For a turn it is allowed to take one or two neighbouring coins. The player who has nothing to take loses.

There are three piles of rocks: in the first pile there are 10 rocks, 15 in the second pile and 20 in the third pile. In this game (with two players), in one turn a player is allowed to divide one of the piles into two smaller piles. The loser is the one who cannot make a move. Which player would be the winner?