Problems

Age
Difficulty
Found: 32

The circles σ1 and σ2 intersect at points A and B. At the point A to σ1 and σ2, respectively, the tangents l1 and l2 are drawn. The points T1 and T2 are chosen respectively on the circles σ1 and σ2 so that the angular measures of the arcs T1A and AT2 are equal (the arc value of the circle is considered in the clockwise direction). The tangent t1 at the point T1 to the circle σ1 intersects l2 at the point M1. Similarly, the tangent t2 at the point T2 to the circle σ2 intersects l1 at the point M2. Prove that the midpoints of the segments M1M2 are on the same line, independent of the positions of the points T1,T2.

A maths teacher draws a number of circles on a piece of paper. When she shows this piece of paper to the young mathematician, he claims he can see only five circles. The maths teacher agrees. But when she shows the same piece of paper to another young mathematician, he says that there are exactly eight circles. The teacher confirms that this answer is also correct. How is that possible and how many circles did she originally draw on that piece of paper?

There are 25 points on a plane, and among any three of them there can be found two points with a distance between them of less than 1. Prove that there is a circle of radius 1 containing at least 13 of these points.

On a circle of radius 1, the point O is marked and from this point, to the right, a notch is marked using a compass of radius l. From the obtained notch O1, a new notch is marked, in the same direction with the same radius and this is process is repeated 1968 times. After this, the circle is cut at all 1968 notches, and we get 1968 arcs. How many different lengths of arcs can this result in?