Several films were nominated for the “Best Math Movie“ award. Each of the 10 judges secretly picked the top movie of their choice. It is known that out of any 4 judges, at least 2 voted for the same film. Prove that there exists a film that was picked by at least 4 judges.
Out of \(7\) integer numbers, the sum of any \(6\) is a multiple of \(5\). Show that every one of these numbers is a multiple of \(5\).
An \(8 \times 8\) chessboard has 30 diagonals total (15 in each direction). Is it possible to place several chess pieces on this chessboard in such a way that the total number of pieces on each diagonal would be odd?
Anna’s garden is a grid of \(n \times m\) squares. She wants to have trees in some of these squares, but she wants the total number of trees in each column and in each row to be an odd number (not necessarily the same, they just all need to be odd). Show that it is possible only if \(m\) and \(n\) are both even or both odd and calculate in how many different ways she can place the trees in the grid.
From the set of numbers 1 to \(2n\), \(n + 1\) numbers are chosen. Prove that among the chosen numbers there are two, one of which is divisible by another.
We are given 51 two-digit numbers – we will count one-digit numbers as two-digit numbers with a leading 0. Prove that it is possible to choose 6 of these so that no two of them have the same digit in the same column.
You are given 1002 different integers that are no greater than 2000. Prove that it is always possible to choose three of the given numbers so that the sum of two of them is equal to the third.
Will this still always be possible if we are given 1001 integers rather than 1002?
Prove that amongst any 11 different decimal fractions of infinite length, there will be two whose digits in the same column – 10ths, 100s, 1000s, etc – coincide (are the same) an infinite number of times.
An iterative polyline serves as a geometric interpretation of the iteration process. To construct it, on the \(Oxy\) plane, the graph of the function \(f (x)\) is drawn and the bisector of the coordinate angle is drawn, as is the straight line \(y = x\). Then on the graph of the function the points \[A_0 (x_0, f (x_0)), A_1 (x_1, f (x_1)), \dots, A_n (x_n, f (x_n)), \dots\] are noted and on the bisector of the coordinate angle – the points \[B_0 (x_0, x_0), B_1 (x_1, x_1), \dots , B_n (x_n, x_n), \dots.\] The polygonal line \(B_0A_0B_1A_1 \dots B_nA_n \dots\) is called iterative.
Construct an iterative polyline from the following information:
a) \(f (x) = 1 + x/2\), \(x_0 = 0\), \(x_0 = 8\);
b) \(f (x) = 1/x\), \(x_0 = 2\);
c) \(f (x) = 2x - 1\), \(x_0 = 0\), \(x_0 = 1{,}125\);
d) \(f (x) = - 3x/2 + 6\), \(x_0 = 5/2\);
e) \(f (x) = x^2 + 3x - 3\), \(x_0 = 1\), \(x_0 = 0{,}99\), \(x_0 = 1{,}01\);
f) \(f (x) = \sqrt{1 + x}\), \(x_0 = 0\), \(x_0 = 8\);
g) \(f (x) = x^3/3 - 5x^2/x + 25x/6 + 3\), \(x_0 = 3\).
Prove that for a monotonically increasing function \(f (x)\) the equations \(x = f (f (x))\) and \(x = f (x)\) are equivalent.