All of the points with whole number co-ordinates in a plane are plotted in one of three colours; all three colours are present. Prove that there will always be possible to form a right-angle triangle from these points so that its vertices are of three different colours.
Inside a square with side 1 there are several circles, the sum of the radii of which is 0.51. Prove that there is a line that is parallel to one side of the square and that intersects at least 2 circles.
Find the number of rectangles made up of the cells of a board with \(m\) horizontals and \(n\) verticals that contain a cell with the coordinates \((p, q)\).
A convex polygon on a plane contains no fewer than \(m^2+1\) points with whole number co-ordinates. Prove that within the polygon there are \(m+1\) points with whole number co-ordinates that lie on a single straight line.