Problems

Age
Difficulty
Found: 31

The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 \geq - a\), \(x_{n + 1} = \sqrt{a + x_n}\). Prove that the sequence \(x_n\) is monotonic and bounded. Find its limit.

We call the geometric-harmonic mean of numbers \(a\) and \(b\) the general limit of the sequences \(\{a_n\}\) and \(\{b_n\}\) constructed according to the rule \(a_0 = a\), \(b_0 = b\), \(a_{n + 1} = \frac{2a_nb_n}{a_n + b_n}\), \(b_{n + 1} = \sqrt{a_nb_n}\) (\(n \geq 0\)).

We denote it by \(\nu (a, b)\). Prove that \(\nu (a, b)\) is related to \(\mu (a, b)\) (see problem number 61322) by \(\nu (a, b) \times \mu (1/a, 1/b) = 1\).

Problem number 61322 says that both of these sequences have the same limit.

This limit is called the arithmetic-geometric mean of the numbers \(a, b\) and is denoted by \(\mu (a, b)\).

Author: I.I. Bogdanov

Peter wants to write down all of the possible sequences of 100 natural numbers, in each of which there is at least one 3, and any two neighbouring terms differ by no more than 1. How many sequences will he have to write out?

Author: I.I. Bogdanov

Peter wants to write down all of the possible sequences of 100 natural numbers, in each of which there is at least one 4 or 5, and any two neighbouring terms differ by no more than 2. How many sequences will he have to write out?

At a contest named “Ah well, monsters!”, 15 dragons stand in a row. Between neighbouring dragons the number of heads differs by 1. If the dragon has more heads than both of his two neighbors, he is considered cunning, if he has less than both of his neighbors – strong, the rest (including those standing at the edges) are considered ordinary. In the row there are exactly four cunning dragons – with 4, 6, 7 and 7 heads and exactly three strong ones – with 3, 3 and 6 heads. The first and last dragons have the same number of heads.

a) Give an example of how this could occur.

b) Prove that the number of heads of the first dragon in all potential examples is the same.

Author: G. Zhukov

The square trinomial \(f (x) = ax^2 + bx + c\) that does not have roots is such that the coefficient \(b\) is rational, and among the numbers \(c\) and \(f (c)\) there is exactly one irrational.

Can the discriminant of the trinomial \(f (x)\) be rational?

At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum?

At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum? You are given a number \(x\) that is greater than 1. Is the following inequality necessarily fulfilled \(\lfloor \sqrt{\!\sqrt{x}}\rfloor = \lfloor \sqrt{\!\sqrt{x}}\rfloor\)?