Problems

Age
Difficulty
Found: 38

a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.

b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).

Gary drew an empty table of \(50 \times 50\) and wrote on top of each column and to the left of each row a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down a product of numbers written at the top of its column and to the left of the row (the “multiplication table”). What is the largest number of products in this table which could be rational numbers?

The triangle \(C_1C_2O\) is given. Within it the bisector \(C_2C_3\) is drawn, then in the triangle \(C_2C_3O\) – bisector \(C_3C_4\) and so on. Prove that the sequence of angles \(\gamma_n = C_{n + 1}C_nO\) tends to a limit, and find this limit if \(C_1OC_2 = \alpha\).

The equations \[ax^2 + bx + c = 0 \tag{1}\] and \[- ax^2 + bx + c \tag{2}\] are given. Prove that if \(x_1\) and \(x_2\) are, respectively, any roots of the equations (1) and (2), then there is a root \(x_3\) of the equation \(\frac 12 ax^2 + bx + c\) such that either \(x_1 \leq x_3 \leq x_2\) or \(x_1 \geq x_3 \geq x_2\).

In a one-on-one tournament 10 chess players participate. What is the least number of rounds after which the single winner could have already been determined? (In each round, the participants are broken up into pairs. Win – 1 point, draw – 0.5 points, defeat – 0).

There are two symmetrical cubes. Is it possible to write some numbers on their faces so that the sum of the points when throwing these cubes on the upwards facing face on landing takes the values 1, 2, ..., 36 with equal probabilities?

A sailor can only serve on a submarine if their height does not exceed 168 cm. There are four teams \(A\), \(B\), \(C\) and \(D\). All sailors in these teams want to serve on a submarine and have been rigorously selected. There remains the last selection round – for height.

In team \(A\), the average height of sailors is 166 cm.

In team \(B\), the median height of the sailors is 167 cm.

In team \(C\), the tallest sailor has a height of 169 cm.

In team \(D\), the mode of the height of the sailors is 167 cm.

In which team, can at least half of the sailors definitely serve on the submarine?

Valerie wrote the number 1 on the board, and then several more numbers. As soon as Valerie writes the next number, Mike calculates the median of the already available set of numbers and writes it in his notebook. At some point, in Mike’s notebook, the numbers: 1; 2; 3; 2.5; 3; 2.5; 2; 2; 2; 2.5 are written.

a) What is the fourth number written on the board?

b) What is the eighth number written on the board?

An ant goes out of the origin along a line and makes \(a\) steps of one unit to the right, \(b\) steps of one unit to the left in some order, where \(a > b\). The wandering span of the ant is the difference between the largest and smallest coordinates of the ant for the entire length of its journey.

a) Find the largest possible wandering range.

b) Find the smallest possible range.

c) How many different sequences of motion of the ant are there, where the wandering range is the greatest possible?