Problems

Age
Difficulty
Found: 859

a) One person had a basement illuminated by three electric bulbs. Switches of these bulbs are located outside the basement, so that having switched on any of the switches, the owner has to go down to the basement to see which lamp switches on. One day he came up with a way to determine for each switch which bulb it switched on, descending into the basement exactly once. What is the method?

b) If he goes down to the basement exactly twice, how many bulbs can he identify the switches for?

Peter thought of a number between 1 to 200. What is the fewest number of questions for which you can guess the number if Peter answers

a) “yes ” or “no”;

b) “yes”, “no” or “I do not know”

for every question?

There are 4 coins. Of the four coins, one is fake (it differs in weight from the real ones, but it is not known if it is heavier or lighter). Find the fake coin using two weighings on scales without weights.

Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).

a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.

b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).

Author: D.E. Shnol

On the island of Truthland, all of the inhabitants may be mistaken, but the younger ones never contradict the elders, and when the older ones contradict the younger ones, they (the elders) are not mistaken. Between the residents A, B and C there was such a conversation:

A: B is the tallest.

B: A is the tallest.

C: I’m taller than B.

Does it follow from this conversation that the younger the person, the taller he or she is (for the three people having this conversation)?

Author: I.V. Izmestyev

Postman Pat did not want to give away the parcel. So, Matt suggested that he play the following game: every move, Pat writes in a line from left to right the letters M and P, randomly alternating them, until he has a line made up of 11 letters. Matt, after each of Pat’s moves, if he wants, swaps any two letters. If in the end it turns out that the recorded word is a palindrome (that is, it is the same if read from left to right and right to left), then Pat gives Matt the parcel. Can Matt play in such a way as to get the parcel?