Problems

Age
Difficulty
Found: 93

At a round table, 2015 people are sitting down, each of them is either a knight or a liar. Knights always tell the truth, liars always lie. They were given one card each, and on each card a number is written; all the numbers on the cards are different. Looking at the cards of their neighbours, each of those sitting at the table said: “My number is greater than that of each of my two neighbors.” After that, \(k\) of the sitting people said: “My number is less than that of each of my two neighbors.” At what maximum \(k\) could this occur?

A rectangular chocolate bar size \(5 \times 10\) is divided by vertical and horizontal division lines into 50 square pieces. Two players are playing the following game. The one who starts breaks the chocolate bar along some division line into two rectangular pieces and puts the resulting pieces on the table. Then players take turns doing the same operation: each time the player whose turn it is at the moment breaks one of the parts into two parts. The one who is the first to break off a square slice \(1\times 1\) (without division lines) a) loses; b) wins. Which of the players can secure a win: the one who starts or the other one?

There is a system of equations \[\begin{aligned} * x + * y + * z &= 0,\\ * x + * y + * z &= 0,\\ * x + * y + * z &= 0. \end{aligned}\] Two people alternately enter a number instead of a star. Prove that the player that goes first can always ensure that the system has a non-zero solution.

Two players play on a square field of size \(99 \times 99\), which has been split onto cells of size \(1 \times 1\). The first player places a cross on the center of the field; After this, the second player can place a zero on any of the eight cells surrounding the cross of the first player. After that, the first puts a cross onto any cell of the field next to one of those already occupied, etc. The first player wins if he can put a cross on any corner cell. Prove that with any strategy of the second player the first can always win.

There are three piles of rocks: in the first pile there are 10 rocks, 15 in the second pile and 20 in the third pile. In this game (with two players), in one turn a player is allowed to divide one of the piles into two smaller piles. The loser is the one who cannot make a move. Which player would be the winner?

In the first pile there are 100 sweets and in the second there are 200. Consider the game with two players where: in one turn a player can take any amount of sweets from one of the piles. The winner is the one who takes the last sweet. Which player would win by using the correct strategy?

A cat tries to catch a mouse in labyrinths A, B, and C. The cat walks first, beginning with the node marked with the letter “K”. Then the mouse (from the node “M”) moves, then again the cat moves, etc. From any node the cat and mouse go to any adjacent node. If at some point the cat and mouse are in the same node, then the cat eats the mouse.

Can the cat catch the mouse in each of the cases A, B, C?

image

Two play a game on a chessboard \(8 \times 8\). The player who makes the first move puts a knight on the board. Then they take turns moving it (according to the usual rules), whilst you can not put the knight on a cell which he already visited. The loser is one who has nowhere to go. Who wins with the right strategy – the first player or his partner?

Two players in turn increase a natural number in such a way that at each increase the difference between the new and old values of the number is greater than zero, but less than the old value. The initial value of the number is 2. The winner is the one who can create the number 1987. Who wins with the correct strategy: the first player or his partner?

a) The vertices (corners) in a regular polygon with 10 sides are colored black and white in an alternating fashion (i.e. one vertex is black, the next is white, etc). Two people play the following game. Each player in turn draws a line connecting two vertices of the same color. These lines must not have common vertices (i.e. must not begin or end on the same dot as another line) with the lines already drawn. The winner of the game is the player who made the final move. Which player, the first or the second, would win if the right strategy is used?

b) The same problem, but for a regular polygon with 12 sides.