Problems

Age
Difficulty
Found: 34

Among some number of mathematicians, every seventh is a philosopher, and among some number of philosophers every ninth is a mathematician. Who are there more of: philosophers or mathematicians?

In the garden of Sandra and Lewis 2006 rose bushes were growing. Lewis watered half of all the bushes, and Sandra watered half of all the bushes. At the same time, it turned out that exactly three bushes, the most beautiful, were watered by both Sandra and Lewis. How many rose bushes have not been watered?

11 scouts are working on 5 different badges. Prove that there will be two scouts \(A\) and \(B\), such that every badge that \(A\) is working towards is also being worked towards by \(B\).

Arrange in a row the numbers from 1 to 100 so that any two neighbouring ones differ by at least 50.

A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?

Today you saw two infinitely long buses with seats numbered as \(1,2,3,...\) carrying infinitely many guests each arriving at the full hotel. How do you accommodate everyone?

Now there are finitely many infinitely long buses with seats numbered as \(1,2,3,...\) carrying infinitely many guests each arriving at the full hotel. Now what do you do?

How about infinitely many very long buses with seats numbered \(1,2,3...\), each carrying infinitely many guests, all arriving at the hotel. Assume for now that the hotel is empty. But that seems like a lot of guests to accommodate. What should you do?

The whole idea of problems with Hilbert’s Hotel is about assigning numbers to elements of an infinite set. We say that a set of items is countable if and only if we can give all the items of the set as gifts to the guests at the Hilbert’s hotel, and each guest gets at most one gift. In other words, it means that we can assign a natural number to every item of the set. Evidently, the set of all the natural numbers is countable: we gift the number \(n\) to the guest in room \(n\).

The set of all integers, \(\mathbb{Z}\), is also countable. We gift the number \(n\) to the guest in room \(n\). Then we ask everyone to take their gift and move to the room double their original number. Rooms with odd numbers are now free (\(1, 3, 5, 7, \dots\)). We fill these rooms with guests from an infinite bus and gift the number \(-k\) to the guest in room \(2k+1\). Yes, that’s right: the person in the first room will be gifted the number \(0\).

Prove now that the set of all positive rational numbers, \(\mathbb{Q}^+\), is also countable. Recall that a rational number can be represented as a fraction \(\frac{p}{q}\) where the numbers \(p\) and \(q\) are coprime.