A unit square is divided into \(n\) triangles. Prove that one of the triangles can be used to completely cover a square with side length \(\frac{1}{n}\).
The length of the hypotenuse of a right-angled triangle is 3.
a) The Scattered Scientist calculated the dispersion of the lengths of the sides of this triangle and found that it equals 2. Was he wrong in the calculations?
b) What is the smallest standard deviation of the sides that a rectangular triangle can have? What are the lengths of its sides, adjacent to the right angle?
A white plane is arbitrarily sprinkled with black ink. Prove that for any positive \(l\) there exists a line segment of length \(l\) with both ends of the same colour.
On the sides \(AB\), \(BC\) and \(AC\) of the triangle \(ABC\) points \(P\), \(M\) and \(K\) are chosen so that the segments \(AM\), \(BK\) and \(CP\) intersect at one point and \[\vec{AM} + \vec{BK}+\vec{CP} = 0\] Prove that \(P\), \(M\) and \(K\) are the midpoints of the sides of the triangle \(ABC\).
Three circles are constructed on a triangle, with the medians of the triangle forming the diameters of the circles. It is known that each pair of circles intersects. Let \(C_{1}\) be the point of intersection, further from the vertex \(C\), of the circles constructed from the medians \(AM_{1}\) and \(BM_{2}\). Points \(A_{1}\) and \(B_{1}\) are defined similarly. Prove that the lines \(AA_{1}\), \(BB_{1}\) and \(CC_{1}\) intersect at the same point.
A Cartesian plane is coloured in in two colours. Prove that there will be two points on the plane that are a distance of 1 apart and are the same colour.
All the points on the edge of a circle are coloured in two different colours at random. Prove that there will be an equilateral triangle with vertices of the same colour inside the circle – the vertices are points on the circumference of the circle.
Prove that no straight line can cross all three sides of a triangle, at points away from the vertices.
The angles of a triangle are in the ratio \(2: 3: 4\). Find the ratio of the outer angles of the triangle.
One angle of a triangle is equal to the sum of its other two angles. Prove that the triangle is right-angled.