Problems

Age
Difficulty
Found: 46

Is it possible to place 12 identical coins along the edges of a square box so that touching each edge there were exactly: a) 2 coins, b) 3 coins, c) 4 coins, d) 5 coins, e) 6 coins, f) 7 coins.

You are allowed to place coins on top of one another. In the cases where it is possible, draw how this could be done. In the other cases, prove that doing so is impossible.

The centres of all unit squares are marked in a \(10 \times 10\) chequered box (100 points in total). What is the smallest number of lines, that are not parallel to the sides of the square, that are needed to be drawn to erase all of the marked points?

Some squares on a chess board contain a chess piece. It is known that each row contains at least one chess piece, but that different rows all have different numbers of pieces. Prove that it is always possible to mark 8 pieces so that each row and each column of the board contains exactly one marked piece.

We are given a convex 200-sided polygon in which no three diagonals intersect at the same point. Each of the diagonals is coloured in one of 999 colours. Prove that there is some triangle inside the polygon whose sides lie some of the diagonals, so that all 3 sides are the same colour. The vertices of the triangle do not necessarily have to be the vertices of the polygon.

All of the points with whole number co-ordinates in a plane are plotted in one of three colours; all three colours are present. Prove that there will always be possible to form a right-angle triangle from these points so that its vertices are of three different colours.

A regular hexagon with sides of length \(5\) is divided by straight lines, that are parallel to its sides, to form regular triangles with sides of length 1. We call the vertices of all such triangles nodes. It is known that more than half of the nodes are marked. Prove that there are five marked nodes lying on one circle.

We are given a table of size \(n \times n\). \(n-1\) of the cells in the table contain the number \(1\). The remainder contain the number \(0\). We are allowed to carry out the following operation on the table:

1. Pick a cell.

2. Subtract 1 from the number in that cell.

3. Add 1 to every other cell in the same row or column as the chosen cell.

Is it possible, using only this operation, to create a table in which all the cells contain the same number?

A target consists of a triangle divided by three families of parallel lines into 100 equilateral unit triangles. A sniper shoots at the target. He aims at a particular equilateral triangle and either hits it or hits one of the adjacent triangles that share a side with the one he was aiming for. He can see the results of his shots and can choose when to stop shooting. What is the largest number of triangles that the sniper can guarantee he can hit exactly 5 times?