Prove that amongst numbers written only using the number 1, i.e.: 1, 11, 111, etc, there is a number than is divisible by 1987.
Prove that there is a power of 3 that ends in 001.
The numbers \(1, 2, \dots , 9\) are divided into three groups. Prove that the product of the numbers in one of the groups will always be no less than 72.
Prove that in any group of 10 whole numbers there will be a few whose sum is divisible by 10.
You are given 11 different natural numbers that are less than or equal to 20. Prove that it is always possible to choose two numbers where one is divisible by the other.
Is it possible to fill a \(5 \times 5\) board with \(1 \times 2\) dominoes?
a) An axisymmetric convex 101-gon is given. Prove that its axis of symmetry passes through one of its vertices.
b) What can be said about the case of a decagon?
How many six-digit numbers exist, the numbers of which are either all odd or all even?
Prove that the product of any three consecutive natural numbers is divisible by 6.
In a city, there are 15 telephones. Can I connect them with wires so that each phone is connected exactly with five others?