Problems

Age
Difficulty
Found: 28

The number \(x\) is such a number that exactly one of the four numbers \(a = x - \sqrt{2}\), \(b = x-1/x\), \(c = x + 1/x\), \(d = x^2 + 2\sqrt{2}\) is not an integer. Find all such \(x\).

The numbers \(x\), \(y\) and \(z\) are such that all three numbers \(x + yz\), \(y + zx\) and \(z + xy\) are rational, and \(x^2 + y^2 = 1\). Prove that the number \(xyz^2\) is also rational.

Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?

The numbers \(p\) and \(q\) are such that the parabolas \(y = - 2x^2\) and \(y = x^2 + px + q\) intersect at two points, bounding a certain figure.

Find the equation of the vertical line dividing the area of this figure in half.