The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 \geq - a\), \(x_{n + 1} = \sqrt{a + x_n}\). Prove that the sequence \(x_n\) is monotonic and bounded. Find its limit.
We call the geometric-harmonic mean of numbers \(a\) and \(b\) the general limit of the sequences \(\{a_n\}\) and \(\{b_n\}\) constructed according to the rule \(a_0 = a\), \(b_0 = b\), \(a_{n + 1} = \frac{2a_nb_n}{a_n + b_n}\), \(b_{n + 1} = \sqrt{a_nb_n}\) (\(n \geq 0\)).
We denote it by \(\nu (a, b)\). Prove that \(\nu (a, b)\) is related to \(\mu (a, b)\) (see problem number 61322) by \(\nu (a, b) \times \mu (1/a, 1/b) = 1\).
Problem number 61322 says that both of these sequences have the same limit.
This limit is called the arithmetic-geometric mean of the numbers \(a, b\) and is denoted by \(\mu (a, b)\).
\(a_1, a_2, a_3, \dots\) is an increasing sequence of natural numbers. It is known that \(a_{a_k} = 3k\) for any \(k\). Find a) \(a_{100}\); b) \(a_{2022}\).
For which natural \(n\) does the number \(\frac{n^2}{1.001^n}\) reach its maximum value?
We consider a sequence of words consisting of the letters “A” and “B”. The first word in the sequence is “A”, the \(k\)-th word is obtained from the \((k-1)\)-th by the following operation: each “A” is replaced by “AAB” and each “B” by “A”. It is easy to see that each word is the beginning of the next, thus obtaining an infinite sequence of letters: AABAABAAABAABAAAB...
a) Where in this sequence will the 1000th letter “A” be?
b) Prove that this sequence is non-periodic.
There are one hundred natural numbers, they are all different, and sum up to 5050. Can you find those numbers? Are they unique, or is there another bunch of such numbers?
In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?
The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).
Is it true that this sequence is limited?
Let the sequences of numbers \(\{a_n\}\) and \(\{b_n\}\), that are associated with the relation \(\Delta b_n = a_n\) (\(n = 1, 2, \dots\)), be given. How are the partial sums \(S_n\) of the sequence \(\{a_n\}\) \(S_n = a_1 + a_2 + \dots + a_n\) linked to the sequence \(\{b_n\}\)?
Definition. The sequence of numbers \(a_0, a_1, \dots , a_n, \dots\), which, with the given \(p\) and \(q\), satisfies the relation \(a_{n + 2} = pa_{n + 1} + qa_n\) (\(n = 0,1,2, \dots\)) is called a linear recurrent sequence of the second order.
The equation \[x^2-px-q = 0\] is called a characteristic equation of the sequence \(\{a_n\}\).
Prove that, if the numbers \(a_0\), \(a_1\) are fixed, then all of the other terms of the sequence \(\{a_n\}\) are uniquely determined.