Problems

Age
Difficulty
Found: 76

There is a deck of playing cards on the table (for example, in a row). On top of each card we put a card from another deck. Some cards may have coincided. Find:

a) the mathematical expectation of the number of cards that coincide;

b) the variance of the number of cards that coincide.

If one person spends one minute waiting, we will say that one human-minute is spent aimlessly. In the queue at the bank, there are eight people, of which five plan to carry out simple operations, which take 1 minute, and the others plan to carry out long operations, taking 5 minutes. Find:

a) the smallest and largest possible total number of aimlessly spent human-minutes;

b) the mathematical expectation of the number of aimlessly spent human-minutes, provided that customers queue up in a random order.

There are 9 street lamps along the road. If one of them does not work but the two next to it are still working, then the road service team is not worried about it. But if two lamps in a row do not work then the road service team immediately changes all non-working lamps. Each lamp does not work independently of the others.

a) Find the probability that the next replacement will include changing 4 lights.

b) Find the mathematical expectation of the number of lamps that will have to be changed on the next replacement.

At the power plant, rectangles that are 2 m long and 1 m wide are produced. The length of the objects is measured by the worker Howard, and the width, irrespective of Howard, is measured by the worker Rachel. The average error is zero for both, but Howard allows a standard measurement error (standard deviation of length) of 3 mm, and Rachel allows a standard error of 2 mm.

a) Find the mathematical expectation of the area of the resulting rectangle.

b) Find the standard deviation of the area of the resulting rectangle in centimetres squared.

At a factory known to us, we cut out metal disks with a diameter of 1 m. It is known that a disk with a diameter of exactly 1 m weighs exactly 100 kg. During manufacturing, a measurement error occurs, and therefore the standard deviation of the radius is 10 mm. Engineer Gavin believes that a stack of 100 disks on average will weigh 10,000 kg. By how much is the engineer Gavin wrong?

In a convex polygon, which has an odd number of vertices equal to \(2n + 1\), two independently of each other random diagonals are chosen. Find the probability that these diagonals intersect inside the polygon.

At a conference there were 18 scientists, of which exactly 10 know the eye-popping news. During the break (coffee break), all scientists are broken up into random pairs, and in each pair, anyone who knows the news, tells this news to another if he did not already know it.

a) Find the probability that after the coffee break, the number of scientists who know the news will be 13.

b) Find the probability that after the coffee break the number of scientists who know the news will be 14.

c) Denote by the letter \(X\) the number of scientists who know the eye-popping news after the coffee break. Find the mathematical expectation of \(X\).

A high rectangle of width 2 is open from above, and the L-shaped domino falls inside it in a random way (see the figure).

a) \(k\) \(L\)-shaped dominoes have fallen. Find the mathematical expectation of the height of the resulting polygon.

b) \(7\) \(G\)-shaped dominoes fell inside the rectangle. Find the probability that the resulting figure will have a height of 12.

Two hockey teams of the same strength agreed that they will play until the total score reaches 10. Find the mathematical expectation of the number of times when there is a draw.

A ticket for a train costs 50 pence, and the penalty for a ticketless trip is 450 pence. If the free rider is discovered by the controller, he pays both the penalty and the ticket price. It is known that the controller finds the free rider on average once out of every 10 trips. The free rider got acquainted with the basics of probability theory and decided to adhere to a strategy that gives the mathematical expectation of spending the smallest possible. How should he act: buy a ticket every time, never buy one, or throw a coin to determine whether he should buy a ticket or not?