Let \(n\) numbers are given together with their product \(p\). The difference between \(p\) and each of these numbers is an odd number.
Prove that all \(n\) numbers are irrational.
Find \(x^3 +y^3\) if \(x+y=5\) and \(x+y+x^2 y +xy^2 =24\).
Is it true that, if \(b>a+c>0\), then the quadratic equation \(ax^2 +bx+c=0\) has two roots?
Compute the following: \[\frac{(2001\times 2021 +100)(1991\times 2031 +400)}{2011^4}.\]
Prove that, if \(b=a-1\), then \[(a+b)(a^2 +b^2)(a^4 +b^4)\dotsb(a^{32} +b^{32})=a^{64} -b^{64}.\]
Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]
Derive from the theorem in question 61013 that \(\sqrt{17}\) is an irrational number.
For a given polynomial \(P (x)\) we describe a method that allows us to construct a polynomial \(R (x)\) that has the same roots as \(P (x)\), but all multiplicities of 1. Set \(Q (x) = (P(x), P'(x))\) and \(R (x) = P (x) Q^{-1} (x)\). Prove that
a) all the roots of the polynomial \(P (x)\) are the roots of \(R (x)\);
b) the polynomial \(R (x)\) has no multiple roots.
Construct the polynomial \(R (x)\) from the problem 61019 if:
a) \(P (x) = x^6 - 6x^4 - 4x^3 + 9x^2 + 12x + 4\);
b)\(P (x) = x^5 + x^4 - 2x^3 - 2x^2 + x + 1\).
Let it be known that all the roots of some equation \(x^3 + px^2 + qx + r = 0\) are positive. What additional condition must be satisfied by its coefficients \(p, q\) and \(r\) in order for it to be possible to form a triangle from segments whose lengths are equal to these roots?