Author: A.K. Tolpygo
An irrational number \(\alpha\), where \(0 <\alpha <\frac 12\), is given. It defines a new number \(\alpha_1\) as the smaller of the two numbers \(2\alpha\) and \(1 - 2\alpha\). For this number, \(\alpha_2\) is determined similarly, and so on.
a) Prove that for some \(n\) the inequality \(\alpha_n <3/16\) holds.
b) Can it be that \(\alpha_n> 7/40\) for all positive integers \(n\)?
Let \(n\) numbers are given together with their product \(p\). The difference between \(p\) and each of these numbers is an odd number.
Prove that all \(n\) numbers are irrational.
For what natural numbers \(a\) and \(b\) is the number \(\log_{a} b\) rational?
Derive from the theorem in question 61013 that \(\sqrt{17}\) is an irrational number.
The numbers \(x\), \(y\) and \(z\) are such that all three numbers \(x + yz\), \(y + zx\) and \(z + xy\) are rational, and \(x^2 + y^2 = 1\). Prove that the number \(xyz^2\) is also rational.
The number \(x\) is such that both the sums \(S = \sin 64x + \sin 65x\) and \(C = \cos 64x + \cos 65x\) are rational numbers.
Prove that in both of these sums, both terms are rational.
Are there any irrational numbers \(a\) and \(b\) such that the degree of \(a^b\) is a rational number?