On a function \(f (x)\), defined on the entire real line, it is known that for any \(a>1\) the function \(f (x) + f (ax)\) is continuous on the whole line. Prove that \(f (x)\) is also continuous on the whole line.
Let \(f\) be a continuous function defined on the interval \([0; 1]\) such that \(f (0) = f (1) = 0\). Prove that on the segment \([0; 1]\) there are 2 points at a distance of 0.1 at which the function \(f 4(x)\) takes equal values.
A convex figure and point \(A\) inside it are given. Prove that there is a chord (that is, a segment joining two boundary points of a convex figure) passing through point \(A\) and dividing it in half at point \(A\).
Does a continuous function that takes every real value exactly 3 times exist?
Suppose that there are 15 prime numbers forming an arithmetic progression with a difference of \(d\). Prove that \(d >30,000\).
Prove that the function \(\cos \sqrt {x}\) is not periodic.
Method of iterations. In order to approximately solve an equation, it is allowed to write \(f (x) = x\), by using the iteration method. First, some number \(x_0\) is chosen, and then the sequence \(\{x_n\}\) is constructed according to the rule \(x_{n + 1} = f (x_n)\) (\(n \geq 0\)). Prove that if this sequence has the limit \(x * = \lim \limits_ {n \to \infty} x_n\), and the function \(f (x)\) is continuous, then this limit is the root of the original equation: \(f (x ^*) = x^*\).
Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).
A function \(f\) is given, defined on the set of real numbers and taking real values. It is known that for any \(x\) and \(y\) such that \(x > y\), the inequality \((f (x)) ^2 \leq f (y)\) is true. Prove that the set of values generated by the function is contained in the interval \([0,1]\).
Solve the system of equations: \[\begin{aligned} \sin y - \sin x &= x-y; &&\text{and}\\ \sin y - \sin z &= z-y; && \text{and}\\ x-y+z &= \pi. \end{aligned}\]