What has a greater value: \(300!\) or \(100^{300}\)?
Prove that if \(x_0^4 + a_1x_0^3 + a_2x_0^2 + a_3x_0 + a_4\) and \(4x_0^3 + 3a_1x_0^2 + 2a_2x_0 + a_3 = 0\) then \(x^4 + a_1x^3 + a_2x^2 + a_3x + a_4\) is divisible by \((x - x_0)^2\).
Does there exist a number \(h\) such that for any natural number \(n\) the number \(\lfloor h \times 2021^n\rfloor\) is not divisible by \(\lfloor h \times 2021^{n-1}\rfloor\)?
What figure should I put in place of the “?” in the number \(888 \dots 88\,?\,99 \dots 999\) (eights and nines are written 50 times each) so that it is divisible by 7?
A numerical sequence is defined by the following conditions: \[a_1 = 1, \quad a_{n+1} = a_n + \lfloor \sqrt{a_n}\rfloor .\]
Prove that among the terms of this sequence there are an infinite number of complete squares.
Prove the divisibility rule for \(3\): the number is divisible by \(3\) if and only if the sum of its digits is divisible by \(3\).
Find the smallest \(k\) such that \(k!\) (\(k!= k\times(k-1)\times \ldots \times 1\)) is divisible by \(2024\).
While studying numbers and its properites, Robinson came across a 3-digit prime number with the last digit being equal to the sum of the first two digits. What was the last digit of that number if among the number did not have any zeros among it’s digits?
Prove the divisibility rule for \(4\): a number is divisible by \(4\) if and only if the number made by the last two digits of the original number is divisible by \(4\);
Can you come up with a divisibility rule for \(8\)?
When Robinson Crusoe’s friend and assistant named Friday learned about divisibility rules, he was so impressed that he proposed his own rule:
a number is divisible by 27 if the sum of it’s digits is divisible by 27.
Was he right?